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We investigate surface waves on the interface between a thin vapor film and a layer of liquid in the presence
of a high steady heat flux. This problem arises when a metal surface heated to a high temperature is immersed
into a cold liquid. The general boundary conditions, which take into account the temperature dependence of
saturation pressure on the vapor-liquid interface, are derived. These boundary conditions generalize the tradi-
tional conditions on the free surface of liquid in the gravity field. The stability of the planar vapor-liquid
interface is investigated analytically with linear approximations. The dispersion equation for surface waves on
the vapor-liquid interface in the presence of strong heat flux is derived. A number of different, distinct from the
classical surface wave problem, effects arise in the problem under consideration. The thermal processes, which
occur on the phase boundary and are possible in the absence of gravity force, lead to the generation of weakly
decaying periodic waves of low amplitude, whose velocities may exceed significantly those of gravity waves.
The heat flux through the interface may cause periodic surface waves of small length �ripple�, which are not
capillary. The processes of phase transition on the interface are capable of providing the stability of vapor film
under a layer of liquid in the gravity field.
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I. INTRODUCTION

Effects that differ significantly from those occurring on a
free surface of liquid in the gravity field may occur on the
surface of vapor film emerging between a hot material and a
cooling liquid even under conditions of stable stratification
of the media. Examples of processes occurring when solid or
liquid medium heated to a high temperature comes in contact
with cold liquid include heavy accidents at nuclear power
plants and chemical factories or submarine volcanic erup-
tions. Intensive investigations of such processes are presently
under way in many countries �see �1–9� and the list of ref-
erences in these works�.

Oscillations and the explosive mechanism of the break-
down of vapor film was observed by Glazkov et al. in ex-
periments �1–3� as a heated solid metal hemisphere im-
mersed into a layer of cold liquid �pressure of 1 atm and
water temperature of 293 K�. Video recording revealed sur-
face oscillations of the vapor film �about 200 �m thick� on
the hemisphere surface. Intervals between the frames 1 /25
and 1 /50 s �the exposure time in video filming did not ex-
ceed �10−4 s� enabled them to observe relatively fast pro-
cesses invisible to the naked eye. The first frames ��30 s
from the instant of immersion of the hemisphere into water�
show the beginning of vapor film formation. As time went on
the waves appeared on the vapor-liquid interface. In several
cases these waves were proceeded by low frequency �2 Hz�
fluctuations of the smooth thickness of vapor film. A stable
film with small amplitude waves was observed on two types
of the heater surface: on the surface, newly cleaned from
oxides, and the other with a thick oxide layer �more then
100 �m� of low heat conductance. The last type of heater
surface may be obtained after the process of coating within
several minutes. In experiments with oxide layers, bubbles
originated on local parts of the heater surface and within
0.1 to 0.2 s bubble boiling was spreading over the entire sur-
face of the hemisphere. Subsequent frames show the process

of spherical expansion of the vapor region and the transition
to nucleate boiling.

In this paper the surface waves of small amplitude on the
interface between a thin vapor film and a layer of liquid are
investigated in the presence of a steady heat flux from a
metal surface heated to a high temperature to the vapor film
and then from vapor to subcooled liquid. The stability of the
planar vapor-liquid interface is studied using linear approxi-
mations. We derive generalized boundary conditions, which
take into account the temperature dependence of saturation
pressure on the vapor-liquid interface. The dispersion equa-
tion for surface waves on the liquid-vapor interface in the
presence of strong heat flux is derived. The thermal pro-
cesses, which occur on the phase boundary and are possible
in the absence of the force of gravity as well, lead to the
generation of weakly decaying periodic waves of low ampli-
tude, whose velocity may exceed significantly that of gravity
waves. The heat flux through the interface may cause on this
surface periodic waves of small length �ripple� which are not
capillary. The wave processes on the phase interface are ca-
pable of providing for the stability of thin vapor film under
the layer of liquid in the gravity field. Capillary-gravity sur-
face waves may arise in the field of inertial forces �gravity�
on the liquid-vapor interface, similar to any gas-liquid inter-
face. As distinct from effects on a free surface of isothermal
liquid, new additional effects may arise in the processes of
boiling where intense heat fluxes exist which proceed from a
metal surface heated to high temperature to a vapor film and
then from vapor to cold liquid. In the case of high tempera-
ture gradients �in this case, over 107 deg /m� and accordingly
high heat fluxes, the processes of evaporation and condensa-
tion on the interface both affect significantly the dynamics of
capillary-gravity surface waves and lead to the generation of
disturbances of a different type. By understanding the nature
of the small amplitude waves on the interface between the
vapor film and the liquid we can explain the behaviors of
finite amplitude waves and explosive vanishing of the vapor
film that were seen in experiments �1–5�. From these experi-
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ments and our analysis of waves of small amplitude, we
could conclude that periodic waves of finite amplitude, spe-
cific solitons, and the instabilities of finite amplitude waves
may arise in the nonlinear stage of the vapor film evolution.
Preliminary results of the explosive instability when the am-
plitude of the initial small surface wave grows indefinitely at
a finite time were presented in our previous work �6�.

II. SURFACE WAVES ON THE LIQUID-VAPOR
INTERFACE

A. Steady state of the vapor film

As mentioned above, in the experiments �1–3� a metal
sphere heated to a temperature higher than the boiling tem-
perature of a liquid was placed in a container filled with that
liquid at rest. When the liquid was heated and set to boiling,
a film of vapor formed at the sphere surface of the heater.
With the problem of temperature distribution in vapor and
liquid simplified, the coordinate and velocity of motion of
the vapor-liquid interface should be determined from the so-
lution of the Stefan problem. If the heated sphere is im-
mersed in liquid only partially �Fig. 1�, as was the case in the
experiments �1–3�, a steady-state boiling with a weakly vary-
ing film thickness is possible. Here we consider regimes,
where only a minor part of vapor goes out to the space above
the heater, and the bulk of heat released by the heating sur-
face is transferred from vapor to liquid and then from liquid
to the environment.

We will perform a simplified analysis of the processes
observed in the experiments �1–3� in Cartesian coordinates
�−h1�z�h, −��x��� while investigating the stability of
a planar two-phase system consisting of a stationary vapor
film of finite thickness h �Fig. 2� and a thick layer �h1�h� of
cold liquid located beneath this film. We will consider the
case where the temperature of liquid, except for its surface, is
lower than the boiling temperature, the top surface of the
container is maintained at constant temperature T1 exceeding
the boiling temperature of liquid Tb�P� at pressure P, and the
bottom wall of the container is at temperature T2 which is

lower than the boiling temperature of liquid: T2�Tb�P�
�T1.

If the gravity force is directed in opposition to axis z �see
Fig. 2�, this situation corresponds to a stable stratification of
light and heavy media. However, the problem under consid-
eration differs from the standard problem on stability of iso-
thermal layers of light and heavy media in the gravity field.
This difference consists both in the fact that the system is not
isothermal and in the fact that mass fluxes may arise on the
interface because of the boiling of liquid or the condensation
of vapor. The mode of operation with steady-state thickness
of vapor film is possible only in the case of well-defined
values of heat flux from heated surface qw=q0. In this mode
of operation the transient process of liquid boiling and of
vapor generation results in the formation of a steady-state
two-phase system with the vapor film of finite thickness dis-
posed on the layer of a liquid. No evaporation of liquid oc-
curs in such steady state, and the vapor pressure Ps is equal
to saturation pressure Pb�Tb� corresponding to the boiling
temperature on the surface of liquid: TL=Tb.

Steady-state distributions of temperature in vapor and in
liquid at rest �its level corresponds to coordinate z=0, and
the bottom is at z=−h1� can be readily obtained from the
solution of one-dimensional heat equations

d

dz
�s

d

dz
Ts0 = 0 and

d

dz
�L

d

dz
TL0 = 0. �1�

These equations are solved for the following boundary con-
ditions on the container walls:

z = h, Ts = T1 � T2; �2�

z = − h1, TL = T2 � T1; �3�

and on the z=0 interface

Ts�0� = TL�0� = Tb�Pb� , �4�

FIG. 1. Two-phase system consisting of a steady-state vapor
film of finite thickness h located above a thick layer of cold liquid
when a heated sphere is partly immersed in liquid.

FIG. 2. Two-phase system consisting of a steady-state vapor
film of finite thickness and a planar heater located above the layer
of liquid.
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�L
d

dz
TL = �s

d

dz
Ts = − q0 = const 	 0. �5�

Here Tb is the boiling temperature, Pb is the boiling pressure,
and �L, �s are thermal conductivities of liquid and vapor,
respectively.

If the heat flux from vapor on the vapor-liquid interface is
equal to the heat flux to liquid then the mass flux due to
evaporation of liquid or condensation of steam is absent.
Linear profiles of temperature in liquid and vapor are ob-
tained for constant values of thermal conductivity coeffi-
cients. The solution of problems �1�–�5� may be readily ob-
tained in view of thermal conductivity coefficients
dependence on the temperature as well using the Kirchhoff
variable. However, the temperature dependence of thermal
conductivity coefficients is of no importance in this treat-
ment.

B. Equations and boundary conditions
for nonstationary disturbances

We will now investigate the dynamics of the two-
dimensional disturbances of the steady state considered
above, where h�h1. The subscripts L and s indicate various
properties of liquid and vapor, respectively: thermal diffusiv-
ity, thermal conductivity, density, heat capacity, pressure, and
velocity potential. The subscript 0 indicates various proper-
ties of liquid and vapor in stationary condition. The subscript
b indicates various boiling properties, such as the boiling
temperature Tb and the boiling pressure Pb. The subscript F
indicates the velocity of the vapor-liquid interface in the di-
rection of its normal. The subscript f indicates the effective
acceleration. The subscript cr indicates the critical length of
gravity-capillary waves. The subscript n indicates the deriva-
tive �n with respect to the normal to the perturbed liquid-
vapor interface. tc is the characteristic time of the problem.

In systems in which a light hot medium, i.e., vapor, is in
the gravity field above liquid, waves may propagate on the
interface and disturb its shape. In our case, unlike the prob-
lem of waves on a free isothermal surface, one must take into
account the temperature nonuniformity in vapor and liquid
and the processes of evaporation and condensation on the
interface between liquid and vapor. We will first investigate
the evolution of the small disturbances using the equations of
continuity, motion, and energy for each one of the media.
This problem is closely connected with the problem of sta-
bility of the steady state relative to small disturbances.

The disturbed shape of the liquid-vapor interface z
=
�x , t� must be determined during the process of solving the
problem. The liquid may be assumed to be incompressible,
and its motion at velocity u= �u ,0 ,w� may be assumed to be
irrotational. Of course, vapor is not an incompressible me-
dium; however, in the case where the ratio of the character-
istic velocity of vapor us to the velocity of sound in vapor cs
is low,

us/cs � 1, �6�

unsteady-state effects may be ignored in the equations of
continuity and motion. We ignore the effect of viscous forces

in both media. We introduce velocity potentials for liquid
and vapor �functions � and �s, respectively�

uL = ��, us = ��s. �7�

The Laplace equations obtained from the equations of conti-
nuity after substitution of Eq. �7� into the latter are used to
find the functions ��x ,z , t� and �s�x ,z , t�

�� = 0, �8a�

��s = 0, �8b�

where � is the Laplacian.
The distribution of temperature disturbances in liquid TL�

is found from the heat transfer equation

�

�t
TL� − L�TL��x,z,t� = − �u · ��TL��x,z,t� = −

�

�z
�

�

�z
T0L.

�9�

The distribution of temperature in vapor Ts� is determined
similarly using

�

�t
Ts��x,z,t� − s�Ts��x,z,t� = −

�

�z
�s

�

�z
T0s, �10�

where  j =� j /� jCPj �j=L ,s� is thermal diffusivity, � j is ther-
mal conductivity, � j is density, and CPj is heat capacity �j
=L, s�.

It is assumed that the wall temperature is maintained con-
stant; therefore, Eqs. �9� and �10� are solved with the follow-
ing boundary conditions on the channel walls:

TL��x,t,z� = − h1 = 0, �11a�

Ts��x,t,z = h� = 0, �11b�

and the following conditions on the disturbed interface of z
=
�x , t�:

TL��x,t,z = 
� = Ts��
� = ��T/�P�b0�Pb. �12�

The mass flux can be calculated from �10,11�

�ṁ = − �s�nTs� + �L�nTL� . �13�

Here, � is the specific heat of evaporation �condensation�,
and �n is the derivative with respect to the normal to the
perturbed liquid-vapor interface. The term ��T /�P�b0�Pb on
the right-hand side of Eq. �12� allows for the variation of
boiling temperature during the variation of vapor pressure. In
order to calculate the mass flux, one must find the distribu-
tions of temperature in vapor and liquid. In the steady state,
the mass flux ṁ0 according to Eq. �5� is zero,

ṁ0 = ��s
d

dz
T0s − �L

d

dz
T0L��� = 0. �14�

However, the disturbance of the interface may result in the
emergence of mass flux, for which the following preliminary
estimate may be obtained with the constraint 
	0, 
 /h�1:
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ṁ = �s	�T1 − Tb�/�h − 
� − �T1 − Tb�/h
/� = �q0�
/h� .

�15�

Its rigorous proof will be given during the construction of the
complete solution of the problem. Equation �8� for the liquid
velocity potential is solved with the boundary condition on
the bottom of the layer of liquid,

z = − h1, w =
�

�z
� = 0, �16�

and with boundary conditions on the vapor-liquid interface,
which will be derived later.

One of the boundary conditions on the phase interface
follows from the fact that the values of vapor and liquid
pressures are different because of the surface tension forces
arising upon disturbance of the surface of liquid 
�x , t�,

Ps − PL = �
�2

�x2
 . �17�

Here, � is the surface tension coefficient of liquid. In the
general case, the surface tension coefficient depends on tem-
perature; however, we can ignore this dependence at atmo-
spheric pressure and assume that �=const.

The Lagrange-Cauchy relation is valid for the potential
flow of liquid,

�L� �

�t
� + �1/2�� �

�x
��2

+ � �

�z
��2� + gz� = − PL,

�18�

where PL�t ,x ,z� is the pressure in each point of liquid.
Equality �18� may be employed on the free surface of liquid
as well. The vapor pressure on the interface is equal to the
temperature-dependent saturation pressure Ps= Pb�Tb�. Ac-
cording to Eq. �15�, the shift of the vapor film surface 

results in disturbance of the heat flux on the interface. In
turn, the variation of the heat flux from the heated surface to
liquid leads to the variation of saturated vapor temperature
and pressure. Therefore the variation of saturated pressure
�Ps may be expanded using Taylor series in the saturated
vapor temperature variation and keeping only the linear and
quadratic terms in �T,

�Ps = Ps − Ps0 = ��P/�T�b0�T + � �2

�T2 P�
b0

��T�2 + O���T�3� .

�19�

We have ��P /�T�b0�104 Pa/K for water on the boiling line
at atmospheric pressure; therefore we obtain the following
estimate:

��Ps/Ps0�/��Tb/Tb� = ��P/�T�b0�Tb/Ps0� � 1,

��Tb/Tb�/��Ps/Ps0� � 1. �20�

We use Eqs. �17� and �19� and the Lagrange-Cauchy equa-
tion to obtain the boundary condition on the liquid-vapor
interface,

�

�t
� + �1/2�� �

�x
��2

+ � �

�z
��2� + g
 − ��/�L�

�2

�x2


+ �Ps�Ts + Ts��/�L

=
�

�t
� + �1/2�� �

�x
��2

+ � �

�z
��2� + g
 − ��/�L�

�2

�x2


+ ��P/�T�b0Ts� + � �2

�T2 P�
b0

�Ts��
2/�L = 0. �21�

Here, the term �Ps�Ts+Ts��= Ps�Ts+Ts��− Ps�Ts�
= ��P /�T�b0Ts� takes into account the variation of saturation
pressure during the variation of the vapor temperature on the
vapor-liquid interface, where g is the gravity acceleration.
Equation �21� is a generalization of the well-known relation
on the free isothermal surface of the gas-liquid interface
�10–12� and differs from standard relations on the free sur-
face of liquid by the term which takes into account the varia-
tion of the saturation pressure of vapor in the case of tem-
perature disturbance.

It is known that the other boundary condition on the free
surface of liquid

F�x,z,t� = z − 
�x,t� = 0 �22�

follows from kinematic considerations. If the mass flux is
absent this boundary means that the velocity of motion of the
disturbed interface in the direction of its normal

wF = − � �

�t

 + u

�

�x

��� �

�x

�2

+ 1�1/2

= − � �

�t

 +

�

�x
�

�

�x

�1 + � �

�x

�2�−1/2

�23�

is equal to the velocity of motion of liquid in this direction

w�
� = wF. �24�

If the mass flux arises on the vapor-liquid interface

ṁ = �L�wL − wF� = �s�ws − wF� , �25�

then the kinematic boundary condition �24� must take into
account this mass flux ṁ. In the laboratory coordinate sys-
tem, the kinematic boundary condition �25� for liquid in
view of the mass flux becomes

�wL −
�

�t

 −

�

�x
�

�

�x

��� �

�x

�2

+ 1�1/2
= ṁ/�L.

�26�

Because of the mass flux arising on the vapor-liquid inter-
face, the kinematic boundary condition also differs from the
similar one on the free isothermal surface of liquid. The dis-
turbance of the planar vapor-liquid interface may cause the
generation of a flux of matter on this surface even in the
absence of evaporation from the surface in the steady state
�when ṁ0=0�. A flux of matter generates either a source of
vapor arising on the disturbed interface in the case of pre-
vailing effects of evaporation of liquid from the surface or a
sink arising if the effects of condensation of vapor prevail. At
� �

�x
�2�1, the kinematic condition �26� becomes
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wL =
�

�t

 + ṁ/�L +

�

�x
�

�

�x

−

�

�t

� �

�x

�2� 2. �27�

It follows from Eq. �21� that two additional effects must be
taken into account on the interface �distinct from the bound-
ary conditions on the free surface of isothermal liquid�: the
temperature dependence of saturated vapor pressure and the
emergence of mass fluxes from the surface. These effects,
which result in the modification of the boundary conditions
on the interface, appear even in the case of a linear problem.
One can easily see in Eq. �21� that the second term caused by
the variation of saturated vapor pressure � �2

�T2 P�b0�Ts��
2 /�L is

significant only in the nonlinear stage of development of
disturbances.

The Laplace equation for the potential of vapor velocity
�8� must be solved with a boundary condition on the solid
surface

z = h, ws =
�

�z
�s = 0 �28�

and with a boundary condition at z=
,

ws =
�

�z
�s =

�

�t

 + ṁ/�s +

�

�z
�s

�

�x

−

�

�t

� �

�x

�2� 2.

�29�

C. Linear problem for small disturbances evolution

We will now consider the stability of a planar steady-state
interface relative to small disturbances. We will seek the so-
lution of a linear problem for small disturbances in the form


�x,t� = 
00 exp i�kx + �t�,

��x,z,t� = f0�z�exp i�kx + �t�,

�s�x,z,t� = fs�z�exp i�kx + �t� ,

TL� = fL�z�exp i�kx + �t�, Ts� = fs�z�exp i�kx + �t� .

�30�

Here � is the fluctuation frequency, and k is the wave num-
ber �−��k���.

The problem on disturbed motions in liquid and vapor
may be solved first, followed by obtaining the distribution of
temperature disturbances in vapor and liquid and the behav-
ior of disturbances of the interface. The solution of the
Laplace equation �8a� for the velocity potential of liquid with
boundary condition �16� has the form

��x,z,t� = �f00/sinh�kh1��cosh�k�z + h1��exp i�kx + �t� ,

�31�

where f00 is an unknown constant. We similarly find from the
Laplace equation �8b� the velocity potential of vapor with
boundary condition �28� on a solid surface

�s�x,z,t� = − �f0s/sinh�kh��cosh�k�h − z��exp i�kx + �t� ,

�32�

where f0s is an unknown constant.

The disturbance of the phase interface has the form


�x,t� = 
00 exp i�kx + �t� , �33�

where 
00 is an unknown constant.
According to Eq. �1� stationary temperature profiles in

vapor and liquid are given by

T0L�z� = Tb − �Tb − T1��z/h1� = Tb + �q0��z/�L� �34�

and

T0s�z� = Tb − �Tb − Tw��z/h� = Tb + �q0��z/�s� . �35�

Given the velocity fields in vapor and liquid, we can find the
temperature fields from Eqs. �9� and �10�. For small distur-
bances Eqs. �9� and �10� become

�

�t
TL� − L�TL��x,z,t�

= − k�f00/sinh�kh1����q0�/�L�sinh�k�z + h1��exp i�kx + �t�
�36�

and

�

�t
Ts� − s�Ts��x,z,t�

= − k�f0s/sinh�kh����q0�/�s�sinh�k�h − z��exp i�kx + �t� .

�37�

The obtained solutions of Eqs. �36� and �37� satisfy the
boundary conditions �12� on the disturbed interface z
=
�x , t�. Considering inequality �20�, we can ignore the
variation of boiling temperature during the variation of vapor
pressure and write the boundary conditions for disturbances
of temperature �12� at z=0+
�x , t� as

TL��xt,z = 0� + �dT/dz�L0
 = TL��x,t,z = 0� + �q0/�L�
 = 0,

�38�

Ts��xt,z = 0� + �dT/dz�s0
 = Ts��x,t,z = 0� + �q0/�s�
 = 0.

�39�

We substitute the obtained value of velocity �31� into the
heat transfer equation for liquid �36� and the solution of Eq.
�32� into the heat transfer equation for vapor �37�, and use
boundary conditions �11a�, �38�, �11b�, and �39� to find the
distribution of temperature disturbances in liquid and vapor.
The general solution of Eqs. �36� and �37� contains the solu-
tions of homogeneous and nonhomogeneous equations,

TL��xt,z = 0� = − ��q0�/�L�	�
00 − �f00k/i���sinh−1��Lh1�

�sinh��L�z + h1�� + �f00k/i��sinh�kh1�−1

�sinh�k�z + h1��
exp i�kx + �t� �40�

and
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Ts��x,t,z� = − ��q0�/�s�	��
00 − f0sk/i��/sinh��sh1��

�sinh��s�h − z�� + �k/i���f0s/sinh�kh��

�sinh�k�h − z��
exp i�kz + �t� , �41�

where

� j = �k2 + i�/i�1/2, j = L,s .

It is assumed that the following inequalities are valid for the
characteristic time of the problem tc�1 /� and times of re-
laxation to steady-state distribution of temperatures in liquid
tL=1 /k2L and in vapor ts=1 /k2s:

ts/tc � 1, tL/tc � 1. �42�

Using distributions of temperature disturbances in liquid �40�
and vapor �41�, we find the disturbance of mass flux accord-
ing to Eq. �13�,

�ṁ = − ��s
d

dz
Ts��

z=0
+ ��L

d

dz
TL��

z=0
= 0.

Using solutions �40� and �41� and calculating mass flux, we
have

ṁ = ��q0�k/��	��s/k���
00 − f0sk/i���coth��sh�

+ �f0sk/i��coth�kh� + ���L/k��
00 − f00k/i��coth��Lh1�

+ �f0k/i��coth�kh1��
exp i�kx + �t� . �43�

Using boundary conditions �25�, we can express the vapor
velocity ws�z=0� and the liquid velocity wL�z=0�,

wL =
�

�t

 + ṁ/�L, ws =

�

�z
�s =

�

�t

 + ṁ/�s.

Using this equation, the constant f0s in Eq. �43� can be ex-
pressed through constants f00 or 
00. Since �s /�L�1, we ob-
tain

f00 = i�
00 and �44a�

f0s exp i�kx + �t� = f00 exp i�kx + �t� + �ṁ/k�s� .

�44b�

Substituting the relation �44b� in Eq. �43� we obtain the fol-
lowing expression for the mass flux, which is more suitable
for the next analysis:

ṁ = − ��q0�k/��	�
00 − f00k/i�����s/k�coth��sh�

+ ��L/k�coth��Lh1�� + �f00k/i��coth�kh�

+ �f0k/i��coth�kh1�
	1 + ��q0�k/i��s���coth��sh�

− coth�kh��
−1 exp i�kx + �t� . �45�

Now we can calculate the characteristic speed of the liquid
mass flux,

ṁ/�L = − ��q0�k/��L�	�
00 − f00k/i�����s/k�coth��sh�

+ ��L/k�coth��Lh1�� + �f00k/i��coth�kh�

+ �f0k/i��coth�kh1�
	1 + ��q0�k/i��s���coth��sh�

− coth�kh��
−1 exp i�kx + �t� .

The previous equation can be rewritten as

ṁ/�L = �Qc��,k�
00 + i�Qk/��d��,k�f00�exp i�kx + �t� ,

�46�

where

Q = �q0�k/�L� , �47�

c = ���s/k�coth��sh� + ��L/k�coth��sh��	1 + ��q0�k/i��s��

��coth��sh� − coth�kh��
−1, �48�

d = ���s/k�coth��sh���L/k�coth��Lh1� − coth�kh� − coth�kh1��

�	1 + ��q0�k/i��s���coth��sh� − coth�kh��
−1. �49�

D. Dispersive equation for surface waves on the vapor-liquid
interface

Using Eq. �39� we can eliminate the disturbance of vapor
temperature from boundary condition �21�. Then, using Eq.
�46�, we can reduce boundary conditions �21� and �27� to the
form which depends only on the hydrodynamic potential of
liquid ��x ,z=h , t� and on the shift of the interface 
�x , t�.

�

�t
� + gf
 − ��/�L�

�2

�x2
 = i�f00 coth�kh1�

+ �gf + �k2/�L�
00 = 0 �50�

and

�

�t
� −

�

�t

 − �ṁ/�L� = k�1 − iQd/��f00 − �i� + Qc�
00 = 0,

�51�

where

gf = g + q0��P/�T�b0/�L�s. �52�

Equations �50� and �51� yield the dispersion equation for
disturbances of the liquid-vapor interface

D��,k� � �2 − i�Qc − k tanh�kh1��gf + �k2/�L��1 − iQd/��

= ���2 − i�Qc − k tanh�kh1��gf + �k2/�L��

+ ik tanh�kh1��gf + �k2/�L�Qd = 0. �53�

It is clear that, unlike the known problem on the free surface
of an isothermal liquid in the gravity field �11,12�, in the
problem considered here the dispersive equation for surface
waves has an additional root. The dispersive equation �53�
may be rewritten in dimensionless form, using the following
dimensionless variables:

� = ��gfk�−1/2,

m = �kgf�−1/2�q0�k/�L� � 1,

� = �k2/�Lgf . �54�

Now the cubic dispersive equation �53� is rewritten in the
form
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D��,kh� � ���2 − �1 + ��tanh�kh1��

− im��2c − �1 + ��d tanh�kh1�� = 0. �55�

The dispersive equation �53� has three roots. In the case of
characteristic parameters of the problem under consideration
we obtain the inequality

m = ��q0�k/�s��� � 1. �56�

For water boiling under conditions of atmospheric pressure
and heat flux from heated surface q0=107 W /m2 we have
m=3�10−7. All roots of the dispersive equation �53� can
now be obtained readily using perturbation theory:

� = �0 + m�1 + m2�2 + O�m3� . �57�

The zero-order solutions are

�01,2 = � �tanh�kh1��1 + ���1/2, �03 = 0. �58�

0 � �01,2 � 1. �59�

Roots �01,2 are similar to capillary-gravitational waves on
the free surface of the isothermal liquid, but these new waves
can exist in absence of the gravity force even when the heavy
liquid is placed above light vapor if

gf 	 0 or ��P/�T�b0q0�/�L� 	 g . �60�

The fluctuation frequency in a dimensional form for long
waves �kh�1� is

� = k�gf + �k2/�L� . �61�

The additive to the fluctuation frequency of surface waves
�01,2 in the next following approximation on small param-
eter m�1 becomes

�1 = im�c + tanh�kh1�d�/2. �62�

As m and c+tanh�kh1�d are real and positive �c
+tanh�kh1�d	0� the additive �1 is imaginary. Therefore the
mass flux fluctuations lead to only a small ��1�m�1� at-
tenuation of surface waves due to energy losses for evapora-
tion.

The additional new frequency is imaginary and propor-
tional to the small parameter m,

�3 = imd , �63�

and �1=0 when m=0.
We will select the amplitude of surface disturbances 
00

from Eq. �33� as an independent quantity and will use it to
express all of the remaining constants appearing in the solu-
tion of the linear problem. For the case when �=0 and m
=0 from Eq. �50� we will obtain the constant of the velocity
potential of liquid,

f00 = i�
00/k . �64�

Then according to Eq. �43� we will obtain the constants of
the velocity potential of vapor

f0s = f00 = i�
00/k . �65�

Now we will calculate functions c�� ,k�, d�� ,k�, and the
mass flux using Eq. �46�, �48�, and �49�:

c � coth�kh� + coth�kh1� 	 0, �66a�

d = 0. �66b�

ṁ = Qc��,k�
00 exp i�kx + �t� . �67�

At kh�1 and kh1�1 it follows from Eq. �67� that

ṁ � �2�q0�/h��
�x,t� . �68�

Equation �68� proves the estimate �15�.
Now the dispersion equation for surface waves on the

liquid-vapor interface in the presence of strong heat flux be-
comes

D��,k� � �2 − i�Qc − k tanh�kh1��gf + �k2/�L� = 0.

�69�

It follows from Eq. �69� that the mass fluxes from the inter-
face leads to weak damping of surface oscillation. Let us
emphasize that this damping is attributing to the fact that the
decrease in the vapor film thickness causes an increase in the
heat flux from vapor to liquid, additional liquid evaporation,
and evaporation energy loss. In the case of characteristic
parameters of water that is boiling at an atmospheric pres-
sure, the ratio of damping increment to oscillation period is
very low ���q0�k /��L� / �kgf�1/2�10−6�.

Equation �69� yields the oscillation frequency and the
phase velocity of low-amplitude waves,

� = � �kgf�1/2, Vf = �/k = � �gf/k�1/2. �70�

The pattern of dispersion of waves, though supporting their
similarity to gravity waves on the free surface of liquid, ex-
hibits a number of significant differences. These waves are
caused by disturbances of heat flux, saturation temperature,
and, thereby, saturation pressure; it is because of this that the
acceleration gf ���P /�T�b0��q0� /�s�L� is similar to gravita-
tional acceleration. It is of fundamental importance that
waves of this type may arise because of disturbance of heat
flux through the interface even in the absence of the gravity
force, and on a vertical surface as well.

The mechanism of generation of waves on the interface
under the effect of heat flux is associated with the fact that a
random shift of the layer of liquid toward the heated surface
�i� results in a reduced thickness of the vapor layer and in an
increased heat flux from the heated body to liquid and �ii�
causes an increase in saturation temperature and pressure.
The increase in saturated vapor pressure leads to reverse mo-
tion of the shifted boundary away from the heating surface.
The shift of the interface away from the heated body causes
an increase in the vapor layer thickness and a decrease in the
heat flux and saturation pressure. The decrease in the satu-
rated vapor pressure leads to the shift of the vapor layer
thickness in the opposite direction toward the heating sur-
face. Therefore it is the variation of saturation pressure on
the phase boundary that causes the emergence of a force
tending to return it to its previous state. The heat flux varia-
tions, which cause additional evaporation of liquid or con-
densation of vapor, lead to only a weak damping of oscilla-
tion of the interface because a part of the energy is spent on
evaporation.
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The effect associated with the variation of saturation pres-
sure on the phase boundary and leading to the emergence of
oscillation may exist at any stratification of phases and may
arise even in the absence of the gravity force, while gravity
waves arise only in the case of stable stratification of phases
when the light medium is located above the heavy one. In the
case of fluctuation of the heat flux, the fluctuation of satura-
tion pressure is reflected by the two last terms in Eq. �21�;
but for small fluctuations only the term ��P /�T�b0��q0� /�s�L�
in Eq. �21� is important. Therefore in the case of fluctuation
of the heat flux interface, oscillations arise at any orientation
of phases if condition �60� is valid. This effect may cause the
emergence of waves propagating on the vapor film surface
under conditions of boiling of the vertical wall of the con-
tainer being heated.

Therefore the problem of waves on the vapor-liquid inter-
face is analogous to the problem of propagation of gravity
waves in a layer of liquid with a free boundary, and the
gravity force is represented by the quantity gf associated
with the presence of heat flux through the interface and with
the variation of saturation pressure on the phase boundary.
The velocity of propagation of surface waves depends on the
heat flux from the heating surface and through vapor to liq-
uid and may exceed significantly the velocity of gravity
waves. Possibly, all of the results obtained for gravity waves
�5� are valid in this case as well. In the presence of heat flux,
solitons produced by the fluctuation of saturation pressure
may propagate on the interface.

In the case of unstable stratification of isothermal media
in the gravity field, the Rayleigh-Taylor instability arises on
the interface. Low-amplitude waves caused by intensive heat
fluxes through the vapor-liquid interface may arise in the
case of unstable stratification as well, when the light vapor
film is under the layer of heavy liquid, if the inertia of evapo-
ration exceeds the gravity force. The criterion of stabilization
of Rayleigh-Taylor instability by the heat flux from vapor to
liquid and of ensuring the existence of the vapor film under
the layer of liquid has the form

�q0� 	 qcr = �s�Lg/��P/�T�b0��q0�/�s�L� . �71�

When a vapor film arises at atmospheric pressure under con-
ditions of water boiling on a horizontal surface, heat fluxes
from the heating surface of the order of qcr�2�102 W /m2

may lead to stabilization of the Rayleigh-Taylor instability
and provide the existence of a light vapor phase under heavy
phase of a liquid.

If the mass flux arises on the vapor-liquid interface �m
�0�, then one can see from solutions of the considered prob-
lem �Eqs. �44b� and �68�� that the characteristic velocity of
vapor could exceed that of liquid:

f0s/f00 = �1 + �q0�/�h��s� 	 1. �72�

The case m�1 takes place only for very high heat fluxes if
the inequality

�q0� � qcr1 = ��s��2h��P/�T�b0/�L�s �73�

is satisfied. For water on the boiling line at atmospheric pres-
sure, we obtain qcr1�1013 W /m2. If m�1 the characteristic
velocity of vapor order of the characteristic velocity of liquid

wL � ws. �74�

So for q0��105–107� W /m2�qcr1, m�1 and the inequality
�6� is satisfied.

The presence of heat flux through the interface may lead
to yet another effect of propagation of short waves �ripple�
on the free surface of liquid. These short waves are similar to
gravity-capillary waves but are not the real capillary waves.
Waves on the surface of isothermal liquid in the gravity field,
which are of length

l � lcg = 2���/g�L�1/2, �75�

are capillary. Short waves �ripple�, for which the surface ten-
sion is nevertheless of no importance, arise on the vapor-
liquid interface at high heat fluxes gf �g in the range

lc = 2���/gf�L�1/2 � l � lcg. �76�

These effects are important for the nonlinear behaviors of
waves on the vapor-liquid interface at high heat fluxes.

III. CONCLUSIONS

We formulated and solved the problem of stability �due to
small amplitude fluctuations� a of steady-state interface be-
tween a thin vapor film and a layer of liquid in the presence
of a heat flux. We took into account the effect of the heat flux
from a metal surface heated to a high temperature to the
vapor film, and then from vapor to subcooled liquid, as well
as the effect of the temperature dependence on saturation
pressure. Boundary conditions were derived for disturbances
of the steady vapor-liquid interface, which generalize the
known correlations on the free surface of liquid in the grav-
ity field. These boundary conditions allow for thermal dis-
equilibrium of the processes, which is associated with the
variation of the saturation pressure.

The stability of the planar vapor-liquid interface was in-
vestigated analytically using linear approximations. The dis-
persion equation for surface waves on the liquid-vapor inter-
face at the presence of strong heat flux is derived. A number
of new effects arise in the problem under consideration �as
distinct from the classical problem�.

�1� The thermal processes on the phase boundary lead to
the propagation of weakly decaying waves of low amplitude,
whose velocity may exceed significantly that of gravity
waves.

�2� The heat flux through the interface may cause periodic
waves of small length �ripple� which are not capillary.

�3� The thermal processes on the interface are capable of
providing for the stable existence of the vapor phase under
the layer of liquid in the gravity field.

Due to nonlinear effects, specific solitons and turbulence
may arise on the vapor-liquid interface in the absence of
gravity force. Along with periodic waves and solitons, new
instabilities may arise in the nonlinear stage due to variation
of the film thickness, the nonlinear waves interactions, and
the surface wave turbulence generation.
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